
Nature Synthesis

nature synthesis

https://doi.org/10.1038/s44160-023-00294-7Article

A high-throughput platform for efficient 
exploration of functional polypeptide 
chemical space

Guangqi Wu1,2,3, Haisen Zhou    1,2,3, Jun Zhang4, Zi-You Tian1,2,3, Xingyi Liu1,2,3, 
Shuo Wang1,2,3, Connor W. Coley    5 & Hua Lu    1,2,3 

Rapid and in-depth exploration of the chemical space of high-molecular-
weight synthetic polypeptides via ring-opening polymerization of  
N-carboxyanhydride allows the discovery of protein mimics and functional 
biomaterials. The traditional synthetic workflow, however, is labour 
intensive and has limited throughput. Here we develop an approach for  
the high-throughput diversification of polypeptides based on a click-like  
reaction between selenolate and various electrophiles in aqueous 
solutions. Importantly, the platform is amenable to automation, which 
allows rapid generation of up to 1 ,2 00 h om op ol yp ep tides or random 
heteropolypeptides (RHPs) within one day. With the assistance of machine 
learning, iterative exploration of the RHP library identifies candidates with 
improved glutathione peroxidase-like activity from the complex chemical 
space of which we have little previous knowledge. This automated and high-
throughput platform provides potential solutions to unmet challenges, 
such as the de novo design of artificial enzymes, biomacromolecule delivery 
and understanding of intrinsically disordered proteins.

P ro te ins are natural biopolymers with vast chemical space and 
sophisticated functions, such as binding, catalysis, transportation 
and signalling. For decades, an overarching goal of polymer science 
has been to create protein-like functional polymeric materials, not 
only for fundamental understanding of proteins but also for solving 
real-world challenges1–5. For instance, peptides made by solid-phase 
peptide synthesis (SPPS) have been widely explored. However, SPPS 
is generally limited by the small scale and short length of its products.  
Recent studies have shown that synthetic random heteropolymers 
with statistically controlled side chain compositions are able to exhibit 
protein-like functions even without the peptide backbone6–9. To  
this end, synthetic polypeptides prepared by the ring-opening  
polymerization (ROP) of N-carboxyanhydrides (NCAs) have emerged  
as promising protein mimics with the potential to combine the 

advantages of both peptides and synthetic polymers10–15. Specifically, 
polypeptides possess the same backbone and even biological functions 
as proteins and in the meantime can be produced efficiently at up to 
kilogram scales and a high number-averaged molecular weight (Mn)16. 
One vivid example is Copaxone—a random heteropolypeptide (RHP) 
made by the ROP of four different amino acid NCA monomers. Owing  
to its similar composition to myelin basic protein, Copaxone is  
used as an immunomodulatory drug to treat multiple sclerosis17.  
Nevertheless, similar to other polymers, RHPs are subjected to  
the curse of dimensionality, meaning the combination of just a few  
residues can lead to a chemical space that is too large to be fully 
explored18,19. To reach functional protein-mimicking polypeptides 
from the enormous chemical space, one needs to: (1) facilely produce 
polypeptides from the design space with high fidelity; and (2) establish 
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parallel copolymerization strategy to generate RHPs. However, the 
synthesis procedure was time consuming, with ~500 RHPs produced in 
2 weeks. PPM has also been utilized for the synthesis of both homopoly-
peptides and RHPs (Fig. 1a)53–59, but again most of the early seminal 
works were performed in a low-throughput fashion. Moreover, many 
click reactions often introduce bulky and hydrophobic spacer moieties 
(for example, triazole) that might affect both the secondary structure 
and solubility of the resulting polypeptides60,61.

One underlying challenge for machine learning-assisted polymer 
design is the limited availability of high-quality data37. While most 
studies exploit data from the literature and virtual experiments (for 
example, electronic structure calculations or simulations), an ideal 
platform is capable of performing new experiments to support model 
training. We envision that a powerful PPM chemistry would not only 
simplify the HTS procedure, but is also beneficial for the generation of 
standard data. In this Article, we report the development of a HTS plat-
form in aqueous solutions for polypeptides based on a click-like reac-
tion between selenolate and electrophiles. This quantitative chemistry 
gave accurate control of the molecular composition of RHPs and was 
amenable to automated synthesis, which allowed efficient generation 
and purification of over 1,200 polymers within one day. Compared with 
other click-type reactions, this chemistry only introduced a selenium 
atom as a miniature yet reactive linker, which poses minimum influence 
on the overall polymer structure and offers desirable responsiveness 
and functions to the materials. With the assistance of machine learning 
model-guided optimization, we were able to perform iterative explo-
ration of the RHP chemical space for enzyme mimics and identified 
candidates with improved glutathione peroxidase (GPx)-like activity 
in a more efficient and effective way.

Results and discussion
Design and synthesis of the precursor for PPM
Inspired by studies on selenocysteine-based bioconjugation62–67, we 
sought to introduce a selenolate—arguably one of the most nucleophilic 

an efficient strategy for effective exploration of the space at affordable 
labour and time costs.

The development of automated and high-throughput synthe-
sis (HTS) has greatly facilitated small-molecule drug discovery and 
biomacromolecule evolution20–24. Furthermore, recent applica-
tions of machine learning in chemistry have further accelerated the  
function mining processes and the interpretation of the experimen-
tal results25–31. Although the employment of HTS and/or machine  
learning for making functional polymers can date back to the early 
1990s32–36, progress in this field has largely lagged behind compared 
with progress in small-molecule and biomacromolecule synthesis19,37. 
Currently, HTS of polymers is primarily accomplished by parallel step-
growth polymerizations or chain-growth radical polymerizations32,36,38. 
Langer et al.39,40 applied Michael addition to synthesize poly(β-amino 
ester)s for non-viral gene delivery. Boyer et al. used photo-induced elec-
tron transfer–reversible addition–fragmentation chain transfer for the 
HTS of poly(acryl amide)s to explore polymers with protein binding41 
and antimicrobial activity42. More recently, Leibfarth et al. and Gormley 
et al. applied controlled radical polymerization in combination with 
automated synthesis and machine learning to identify polymers for 
enhanced magnetic resonance signals19 and protein preservation43,44, 
respectively. As a complementary approach to the aforementioned 
parallel polymerization, post-polymerization modification (PPM)45,46 
is also common for library generation47. Compared with the parallel 
polymerization approach, the PPM strategy is advantageous in that all 
data can be generated from one shared precursor polymer synthesized 
from a single batch. For this, highly efficient Huisgen cycloaddition48, 
activated ester–amine conjugation49,50 and thiol-ene reactions51 are 
among the most frequently employed reactions.

To date, attempts to incorporate the NCA and polypeptide  
chemistry into HTS workflows have been challenging and sparse. This 
is partially attributable to the high sensitivity to moisture of the ROP  
system, the poor aqueous solubility of polypeptides and laborious 
workup processes. In a pioneering work, Deming et al.52 applied the 
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functional groups in aqueous solutions—to the side chain for the PPM of 
polypeptides (Fig. 1b). Among various selenol-protecting strategies68, 
we chose to generate the reactive selenium species after polymeriza-
tion through selenoxide elimination (Fig. 1b), owing to its efficiency 
and mildness. This type of reaction was previously documented for  
the introduction of a double bond69. However, the resulting selenium 
species were normally considered as byproducts and discarded70–73. 
Notably, Chen et al.74–76 reported that if a selenium and an amide car-
bonyl were placed at the δ and ζ positions of the side chain of amino 
acids, respectively, the elimination would exclusively take place at 
the Seδ–Cε bond instead of the Cβ–Seδ bond (Fig. 1b). Based on this 
discovery, we designed a selenopolypeptide, P(pAm-SeHC), whose pen-
dant group is a latent selenolate. The seleno-amino acid (pAm-SeHC)  
was synthesized from l-methionine and elemental selenium in a one-
pot manner with no need for chromatography, affording the pure 
product at multi-gram scale (Fig. 2a,b and Supplementary Figs. 1  
and 2). The monomer, namely pAm-SeHC NCA, was then obtained  
using a moisture-tolerant method recently developed by our group 
(Supplementary Figs. 3 and 4)77. Benzyl amine-initiated ROP of  
pAm-SeHC NCA at various monomer-to-initiator concentration 
([M]/[I]) ratios gave complete monomer conversion, generating the 
desired selenopolypeptide P(pAm-SeHC) with a controlled Mn of up 
to 35.8 × 103 g mol−1 and a dispersity of ~1.10 (Fig. 2c, Supplementary 
Fig. 5 and Supplementary Table 1). It is also worth mentioning that the 
whole process did not involve any volatile selenium species and thus 
avoided undesired stench, which has been a common safety concern 
for organoselenium compounds.

Next, we performed the selenoxide elimination of P(pAm-SeHC) 
with tert-butyl hydroperoxide (TBHP). However, initial attempts all 
failed in most common organic solvents, possibly owing to the poor 
organic solubility of both the oxidized intermediate and eliminated 
product. This hurdle was eventually overcome using a one-pot, two-
step process in a biphasic system (Fig. 2d)73. Briefly, P(pAm-SeHC) was 
first oxidized in a mixed tetrahydrofuran (THF)/chloroform solution 
using TBHP, followed by the addition of sodium bicarbonate solution 
and trimethylamine, affording exclusively the expected PSeO2Na in 
the aqueous phase. The generation of PSeO2Na was confirmed by both 
1H and 77Se NMR spectroscopy with an overall yield of ~60% calculated 
from NCA (Fig. 2e and Supplementary Fig. 6). Remarkably, PSeO2Na was 
stable under an ambient atmosphere for at least 3 months at −20 °C, 
making it an ideal intermediate for scaled-up synthesis and long-term 
storage. The block copolymer with poly(ethylene glycol) (PEG) (that 
is, PEG-b-PSeO2Na) was also prepared from PEG-b-P(pAm-SeHC) with 
a modest yield (Supplementary Figs. 7 and 8).

Synthesis of homopolypeptides in solution and solid phase
Next, PSeO2Na was reduced with NaBH4 in water, affording the seleno-
late-bearing polypeptide (PSeNa) for further functionalization (Sup-
plementary Fig. 9). This in situ-generated PSeNa was soluble in aqueous 
solutions and highly reactive for substitution reactions with various 
activated (Hal-1–13 in Table 1) or inactivated (Hal-14–25 in Table 1) 
electrophiles. The PPM exhibited almost quantitative side chain con-
version, as indicated by 1H NMR spectroscopy (Table 1, Fig. 3a and Sup-
plementary Figs. 10–35) and was equally efficient with regard to PSeNa 
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with various degrees of polymerization (degree of polymerization from 
45–130). The size exclusion chromatography (SEC) chromatogram of 
the modified polymer remained a unimodal peak after the modifica-
tion, suggesting negligible backbone degradation, chain scission or 
crosslink during the process (Fig. 3b and Supplementary Fig. 36). Some 
of the obtained polypeptides (for example, P21, P23 and P24; Fig. 3c and 

Supplementary Fig. 37) exhibited typical right-handed α-helical con-
formation in water, implying minimum racemization of the backbone 
under the PPM conditions. The preservation of the chirality could offer 
an opportunity for facile conformational regulation via the selection of 
starting amino acids with different configurations (for example, d- or 
dl-methionine). Side chain oxidation-induced helix-to-coil transition 

Table 1 | PPM of PSeO2Na with activated and inactivated halides
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(Fig. 3c) was also observed, which was similar to the oligo(ethylene 
glycol)-grafted selenopolypeptides78.

The PPM of PSeNa showed remarkable tolerance to various func-
tionalities, including those that are difficult to introduce directly 
through the ROP of NCA. For instance, poly(selenomethionine) (P1) 
and the hydrofluorocarbon-bearing polymer (P20) were smoothly 
synthesized despite their poor solubility in common solvents. Reactive 
functional groups such as alkenes and alkynes were also facilely grafted 
to the side chain (P5 and P6)79. The photo-labile o-nitro benzyl group was 
efficiently incorporated (P8) for potential light-responsive materials80. 
We also generated various anionic and cationic polyelectrolytes bearing 
diverse functionalities, such as carboxylic acids, primary, secondary and 
tertiary amines and quaternary ammonium (P9–P19). The applicability 
of the strategy was further demonstrated by the preparation of densely 
packed brush-like polymer (P23), which has long been challenging 
owing to steric hindrance57. The synthesis of glycopolypeptides used 
to be laborious; here, polypeptides modified with GalNAc (P24) and 
mannose (P25) were readily achieved in one step, holding great promise 
for biomedical applications, including lysosome-targeting chimeras81,82 
and immunotherapy83. Disappointingly, modification of PSeNa with 
inactivated secondary organohalides or primary organochlorides 
gave low grafting efficiency, probably due to their low reactivity. Of 
note, some of the synthesized seleno polypeptides had extremely poor 
solubility even in trifluoroacetic acid (TFA). To circumvent the problem, 
these polymers were prepared using the more soluble block copolymer 
PEG-b-PSeO2Na as the precursor of PPM (P5, P6 and P7).

Other electrophilic substrates besides organohalides were also 
applied for PSeNa modification (Table 2). For example, modification  

of PSeNa with epoxides smoothly generated polypeptides with 
β-hydroxyl selenide (P26 and P27; Supplementary Figs. 38 and 39). We 
also successfully fabricated two polypeptides bearing selenoester (P28 
and P29; Supplementary Figs. 40 and 41)—a functional group incom-
patible with the ROP of NCA due to its vulnerability to nucleophiles84,85. 
Similarly, a polypeptide tethering selenocarbonate was prepared from 
chloroformate (P30; Supplementary Fig. 42). These polymers were all 
obtained with more than 80% separation yields and almost quantitative 
grafting efficiency.

The ROP, oxidative elimination and subsequent PPM processes 
were also attempted on an amine-functionalized resin (Supplementary 
Fig. 43), to examine the feasibility of integrating this chemistry with 
the well-established SPPS. It was found that the product remained 
controlled on the surface of the resin, affording P(pAm-SeHC)  
with high Mn and a unimodal SEC peak after cleavage (Supplementary 
Fig. 43). Moreover, the oxidative elimination and subsequent PPM  
with Hal-13 were also performed on the resin and found to be highly 
effective. After cleavage, pure product P13 was conveniently obtained 
with a quantitative grafting efficiency (Supplementary Fig. 44).

Synthesis of RHPs in solution
With the success in making homopolypeptides, we next exploited the 
chemistry for RHP synthesis by simultaneously treating the precursor 
with multiple organohalides. To facilitate future HTS and machine 
learning algorithm development, we sought to predictively control 
the molecular composition of the RHP through machine-readable 
input37,86. For this, we chose the feeding volume ratio of the organohal-
ides, as it could be directly transformed to the command for automated 
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liquid-handling workstations. To achieve this goal, the conditions (such 
as stock solution concentration, stoichiometry and temperature) for 
the RHP synthesis were carefully optimized on three binary systems: 
(1) both organohalides were inactivated (Hal-16 and Hal-22); (2) both 
organohalides were activated (Hal-11 and Hal-12); and (3) one organo-
halide was activated and the other was inactivated (Hal-9 and Hal-22, 
respectively). After the trial-and-error attempts and considering the 
difference in relative reactivity, we fixed the concentrations of the 
stock solutions at 1.2 and 1.0 equivalent to those of the selenolate for 
the inactivated and activated organohalides, respectively. Meanwhile, 
the total volume of organohalides was set to be equal to the volume  
of the PSeNa solution. With these optimized conditions, a good  
match between the input volume ratio and the actual molecular  
composition of the RHP was obtained for all three scenarios (Fig. 4 and  
Supplementary Figs. 45–47). Thanks to the high reactivity of the 

selenolate, it was unnecessary (and sometimes even deteriorative)  
to use a large excess of the organohalides in the RHP synthesis (Sup-
plementary Figs. 48 and 49). Overall, this capability to precisely control  
the composition of RHP laid a firm foundation for generating high-
quality datasets for machine learning and paved the way for a quantita-
tive structure–activity relationship (SAR).

Exploration of functional RHP with automation and machine 
learning
We then explored the feasibility of transferring the synthesis from flasks 
(5.0 mg ml−1 PSeO2Na; 1.0–4.0 ml) to multi-well plates (1.0 mg ml−1 
PSeO2Na; 100–200 μl). In model studies within an NMR tube, the PPM 
was found to have completed after 6 h at 50 °C or 8 h at 37 °C when an 
inactivated organohalide Hal-16 was used (Supplementary Fig. 50). For 
the activated organohalide Hal-9, the completed modification required 

Table 2 | PPM of PSeO2Na with epoxide, acyl chloride, anhydride and chloroformate
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only 1 h at 50 °C (Supplementary Fig. 51). Based on this finding, the 
HTS of RHP was established with the assistance of a commercialized 
automated workstation for dispensing stock solutions of organohalides 
to plates (Fig. 5a). Then, the freshly reduced PSeNa solution was added 
through pipetting and the plate was sealed and incubated in an oven  
at 50 °C for 6–8 h. The resulting polymers were purified in parallel  
using a desalting plate87. This semi-automated workflow greatly 
boosted the synthesis capability and enabled the parallel prepara-
tion of ~400 RHPs (four plates) in one day. The throughput could be 
improved easily to ~1,200 RHPs (12 plates) per day if only activated 
organohalides were used for modification. Of note, precipitations were 
observed in our preliminary trials when: (1) the content of relatively 
hydrophobic modifiers was high (for example, >0.5); (2) the contents 

of negatively and positively charged modifiers were roughly equal to 
each other, which neutralized the net charge and led to insoluble poly-
plex; and (3) the conversion of the side chain was incomplete and the 
residual selenolate was gradually oxidized into diselenide and formed 
a crosslinked network. To avoid such undesired precipitation, several 
strategies were found to be effective: (1) adding a certain amount of 
organic solvents, such as N,N-dimethylformamide or dimethyl sulfoxide 
when a hydrophobic modifier was used with high ratios; (2) adjusting 
the pH of the reaction system to avoid the isoelectric point of the RHP; 
or (3) attaching PEG to the precursor polymers.

Next, the HTS system was coupled to functional analysis for 
protein-like activity. Many organoselenium compounds show activi-
ties similar to GPx enzymes88,89—a class of proteins that catalyse the 
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Fig. 5 | Closed-loop optimization of GPx activity of the RHPs via HTS and 
machine learning. a, Illustration of the closed-loop workflow containing four 
modules, including HTS, parallel purification, activity readout and Bayesian 
optimization. GSH, reduced glutathione; GSSG, oxidized glutathione. Created 
with BioRender.com. b, Structures of the seven selected organohalides for RHP 
library generation and aim of optimization. The molecular composition of RHPs 
is descripted as a seven-dimensional vector, x = (x1, …, x7), where xn (n = 1–7) is 
the relative volume ratio of the organohalide and cn > 0 (n = 1–7) is the upper limit 
of xn (see Supplementary Information for the detailed design space). The aim of 
optimization is to find a molecular composition x* that maximizes the catalytic 
activity, subject to the constraint that the sum of xn (n = 1–7) is equal to 1. c, GPx-
like activity of RHPs in each iteration via random searching (blue) or Bayesian 
optimization (BO; red). d, Data validation within a plate (n = 8) and between two 

different plates. RHPs with low (lanes 1–3) and high (lanes 4–7) GPx-like activities 
from the database were selected for validation. The dots on the right and left side 
in each lane represent the results from different plates. The black central lines 
and error bars in each lane represent the mean and s.d. The coloured line in each 
lane is the original activity of the RHP from the database. e, Comparison of the 
GPx-like activities of the two RHP hits with the seven homopolypeptides each 
modified with one individual organohalide used in HTS (n = 3). Hit-1: x = (0.12, 
0.12, 0, 0, 0, 0, 0.76) and Hit-2: x = (0, 0.24, 0.22, 0, 0, 0, 0.54). All polymers were 
synthesized in a flask and then purified for GPx activity. The data are presented 
as means ± s.d. Note that the activity of the homopolypeptide P13 could not be 
measured properly owing to precipitation during testing (data replaced with an 
asterisk). f, Parallel coordinate plot describing the copolymer composition and 
performance of the best ten (red) and worst ten (blue) performing RHPs.
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reduction of peroxide by glutathione. Since GPx plays important 
roles in retaining cellular redox homoeostasis90, the development of  
GPx mimics may lead to antioxidative therapeutics for the treatment 
of stroke, reperfusion injury and neurodegenerative diseases91–95.  
We previously synthesized two selenopolypeptides P(EGx-SeHC) 
(x = 3 or 4), but they only exhibited weak GPx-like activities78. Here we 
sought to improve the GPx-like activity of the RHP with the platform and  
provide information on SARs for future works.

Seven organohalides with good water solubility were selected 
for PPM (Fig. 5b). These organohalides offer different structural fea-
tures, including charges, hydrogen bond donors and acceptors, neutral 
polar groups, alky groups and aromatic groups. Mole fractions of the 
components were combined as a vector representation of each RHP. 
A fluorescein was tethered to the amino terminus of the precursor 
polymer (degree of polymerization = 70) as an internal label to quan-
tify the polymer content in each well. The GPx-like activity of each RHP 
was determined by normalizing the absolute readout from a modi-
fied NADPH-coupled assay96 to the fluorescence intensity of each well  
(see the Supplementary Information section ‘Data analysis of GPx-like 
activity assay’ for details). Based on previous optimization studies  
(Fig. 4 and Supplementary Figs. 50 and 51), we built a workflow that  
executes the HTS, parallel purification and activity analysis of the RHPs 
within 10 h (83 experiments per plate with two plates in parallel; Supple-
mentary Fig. 52). However, even with this throughput, the space of hypo-
thetical RHPs was too large to be fully explored. This situation motivates 
the use of a model-guided optimization strategy to help to prioritize 
experiments and accelerate discovery. Bayesian optimization is a power-
ful tool for various design problems97 and is receiving increasing atten-
tion in the chemistry community44,98–100. Because of the data efficiency 
of Bayesian optimization relative to brute force or random screening, 
it is especially useful for problems where evaluation is expensive. We 
applied a Bayesian optimization framework based on BoTorch and Ax101 
and established a closed-loop design–build–test–learn workflow (Fig. 5a).

Within 4 d, four iterations comprising a total of ~660 experiments 
were performed (Fig. 5c), with 166 experiments per iteration. Initially, 
166 RHPs were randomly chosen and analysed from the designed space 
to train a Gaussian process regression model. Candidates for succes-
sive iterations were chosen by selecting compositions that optimized 
an expected improvement acquisition function, subject to the con-
straint that total mole fractions equalled 1. To avoid trapping into local 
minimums, random search and Bayesian optimization were performed 
simultaneously in each round. All of the data, including those from 
previous rounds, were used to retrain the surrogate Gaussian process 
before proposing 83 candidates for the next iteration. It was found 
that while random search consistently found candidates with activities 
near a range of 150–200, Bayesian optimization efficiently found RHPs 
with substantially higher GPx-like activity, particularly in the third and 
fourth iteration (Fig. 5c). T-distributed stochastic neighbour embed-
dings showed that Bayesian optimization quickly identified an area in 
the design space that achieved higher activity (Supplementary Fig. 53).  
Replicate experiments of seven randomly selected RHPs from the 
database were carried out in different plates and the results validated 
the reproducibility of the data (Fig. 5d and Supplementary Table 2).

To further validate the results, two hits from Bayesian optimi-
zation were synthesized in a flask (Supplementary Figs. 54 and 55) 
and their GPx-like activity was evaluated. Hit-1 exhibited around two-
fold higher GPx-like activity than the homopolypeptide modified 
with Hal-19, the most active homopolypeptide in the design space  
(Fig. 5e), which meant that the activity of RHPs is not merely the normal-
ized average of the activity of each component. Although the freshly 
prepared native GPx was substantially more reactive than Hit-1, the 
catalytic activity of native GPx was found to slump to zero during 
incubation at 37 °C for 12 h; in contrast, Hit-1 fully retained its activity 
during incubation under the same conditions (Supplementary Fig. 56).  
This stability underscores one of the many advantages of RHPs in 

biological and biomedical applications. Analysis of the high-performing  
RHPs pointed out a correlation with high x7 (Fig. 5f and Supplementary 
Tables 3 and 4), which was supported by the retrospective analysis  
of the full dataset with a linear regression surrogate model (Supple-
mentary Fig. 57). Interestingly, while the linear model suggested  
maximized x7 to be advantageous for activity, the homopolymer 
with x7 = 1 was less active than Hit-1 or Hit-2. Meanwhile, x2 was also 
positively correlated with GPx activity. Altogether, it is likely that the 
functional groups introduced to the RHPs by Hal-16, Hal-21 and Hal-11 
created a suitable microenvironment favouring the desired chemical 
transformations, which resembled the catalytic pocket of enzymes 
to some extent88.

While the detailed SAR is currently under investigation, the above 
results illustrate that the application of a machine learning model  
or other optimization algorithms can facilitate materials discovery.

Conclusion
In summary, we report a robust, quantitative and divergent strategy 
for the rapid expansion of a polypeptide library based on a universal  
precursor selenopolypeptide. After controlled ROP and a regio selective 
elimination reaction, the in situ-generated selenolate on the side 
chain was readily modified with a school of electrophiles, creating  
homo polypeptides and RHPs with broad chemical diversity. This  
PPM strategy avoided the laborious efforts of making a variety of  
NCAs that are synthetically challenging. Compared with many other 
click reactions, the selenolate is miniature in size and does not  
create a bulky linkage moiety after reaction. Moreover, these poly-
mers can be used to design materials with interesting properties 
and functions by harnessing the unique chemistry and properties  
of selenium63,102–105.

The potential of this modification chemistry was further high-
lighted by the establishment of HTS and machine learning model-
guided optimization of functional RHP. Enabled by the efficiency 
of the reaction, a map from the ratio of the feeding volume to the 
molecular composition was directly created. Because all polypep-
tides were derivatized from the same precursor, this strategy could be  
particularly useful in generating a standardized dataset. Moreover, the 
HTS was performed in aqueous solutions and open air, which allowed 
convenient transfer of the resulting polymers to subsequent biological 
assays. As a proof of concept, we demonstrated a concise workflow ena-
bling the rapid identification of RHPs with promising GPx-like activity. 
The identified RHP exhibited GPx-like activity around twofold higher 
than the most active homopolypeptide. While the detailed SAR is still  
under investigation, these results underscore the power of HTS and 
machine learning in exploring systems of which people have little 
knowledge. Of note, under such synthesis capability, parallel charac-
terization of the material properties may become the rate-limiting 
step in the closed-loop optimization, which could be accelerated  
by further implementation of automation to build a self-driving  
laboratory. Furthermore, by performing the reported ROP and modi-
fication chemistry on an automated solid-phase peptide synthesizer, 
the level of automation could be further augmented. Our preliminary 
results on solid-phase ROP and modification (Supplementary Figs. 43  
and 44) support this notion. With this rich and robust chemistry, we 
envision that the potential of this platform is far beyond artificial 
enzymes and can be readily expanded to applications such as the 
discovery of antimicrobial agents, the understanding of protein phase 
separation and the development of intracellular delivery systems for 
therapeutic biomacromolecules.

Methods
Selenoxide elimination of P(pAm-SeHC)
P(pAm-SeHC), obtained from ROP of 680 mg pAm-SeHC NCA, was 
dissolved in 50 ml THF and 100 ml chloroform. To this solution was 
added 70% TBHP (2,760 μl; 12 equiv. Se), which was then stirred at 
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room temperature for 2 h before trimethylamine (800 μl; 3 equiv. Se) 
and 75 ml NaHCO3 solution (1 M) were added. The system was stirred 
at 37 °C for 16 h, during which a clear phase separation was observed, 
which was used as an indication of the completion of the reaction.  
The aqueous phase was washed with 150 ml dichloromethane and 
dialysed (MWCO 3,500 Da) against 0.5 M NaCl for 12 h, and then  
against water (which was changed twice every day) for 48 h. The remain-
ing content was lyophilized to give the final product as a pale yellow 
powder (256 mg; yield = 64% from NCA).

General procedure for PPM of PSeO2Na
Under the protection of nitrogen, PSeO2Na was dissolved in water 
(5–10 mg ml−1). To the solution was added NaBH4 (5 mg NaBH4 for 10 mg 
PSeO2Na) followed by the addition of TFA (1.5 μl for 5 mg NaBH4; caution:  
gas emission). Precipitation was observed in ~10 min. After 20 min, 
another portion of TFA (1.5 μl) was added. The system was stirred at 
room temperature for 30 min and the completion of the reduction  
was indicated by the re-dissolution of the precipitate. Then, to the 
polymer solution was added the modifier in THF or water (as specified  
in the Supplementary Information section ‘Post polymerization  
modification for homopolypeptides’). The system was stirred at  
the indicated temperature. The selenopolypeptide was purified  
by dialysis and/or SEC and recovered by lyophilization. The PPM of 
PEG-b-PSeO2Na was carried out similarly.

Random generation of RHPs
The 83 RHPs for random search were generated as an 83 × 7 array of 
uniformly sampled values between 0 and 1. Each row (relative abun-
dance) was normalized by its sum to give the composition of RHP 
in terms of mole fractions. These mole fractions were multiplied by 
a factor of 60 μl to yield the volumes of the organohalide solutions 
required for each well.

Bayesian optimization
The Bayesian optimization was implemented in Python using GPyTorch, 
BoTorch and Ax101 (see the Jupyter notebook, BO_GPx_Ax022.ipynb, 
in Supplementary Information for the source code). The Gaussian 
process was chosen as the surrogate model owing to its suitability for 
low-data learning and inherent ability to estimate uncertainty. After 
each iteration, all data were randomly split into 80/20 training/testing 
for surrogate model training. The program performed a hyperparam-
eter optimization to select between four kernels (RBF, Matern-0.5, 
Matern-1.5 and Matern-2.5), ten random seeds and three different 
learning rates (0.01, 0.02 and 0.20) with RMSprop. The model with 
the lowest lost function (negative marginal log likelihood) on the test 
set was chosen. After training the surrogate model, 83 candidates for 
successive iteration were chosen by gen(), which was implemented in 
BoTorch and Ax. This method generates the candidates by optimiz-
ing an expected improvement acquisition function with multi-start 
optimization (number of starting points = 5; number of samples for 
initialization = 100) on the consecutive design space, subject to the 
constraint that the total mole fraction equals 1. Bayesian optimization 
was performed on a Lenovo Legion R9000K laptop with an AMD Ryzen 
9 5900HX CPU and a NVIDIA GeForce RTX 3080 Laptop GPU (16 GB).

Some constraints were set during the optimization. For x1–x5, the 
upper limits were set to 1 throughout the optimization. In the second 
round, the upper limit of x7 (c7) proposed by Bayesian optimization was 
set to 0.5 with the concern of unwanted precipitation. Then, it was real-
ized that excessive positive charge (x6) will cause precipitation during 
synthesis and characterization. Thus, for the rest of the screening, the c6 
was set to 0.5 while the c7 was set back to 1.0. It should be noted that even 
through these constraints were not imposed on the random generation, 
all randomly generated RHPs naturally fell into the space because the 
program is not very likely to generate a vector with an element >0.5.

Additional methods are provided in Supplementary Information.

Data availability
All of the data generated or analysed in this study are included in this 
published article and its Supplementary Information files. Source data 
are provided with this paper.

Code availability
The code for the generation of random RHPs and Bayesian optimization 
in this study is included in Supplementary Code 1.
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