LX Kang, SC Zhang, QW Li, J Zhang*, J. Am. Chem. Soc. 2016, 138(21), 6727-6730.
ABSTRACT: Horizontally aligned semiconducting singlewalled carbon nanotube (s-SWNT) arrays with a certain density are highly desirable for future electronic devices. However, obtaining s-SWNT arrays with simultaneously high purity and high density is extremely challenging. We report herein a rational approach, using ethanol/methane chemical vapor deposition, to grow SWNT arrays with a s-SWNT ratio over 91% and a density higher than 100 tubes/μm. In this approach, at a certain temperature, ethanol was fully thermally decomposed to feed carbon atoms for Trojan-Mo catalysts growing high density SWNT arrays, while the incomplete pyrolysis of methane provided appropriate active H radicals with the help of catalytic sapphire surface to inhibit metallic SWNT (m-SWNT) growth. The synergistic effect of ethanol/methane mixtures resulted in enriched semiconducting SWNTs and no obvious decrease in nanotube density due to their milder reactivity and higher controllability at suitable growth conditions. This work represents a step forward in large-area synthesis of high density s-SWNT arrays on substrates and demonstrates potential applications in scalable carbon nanotube electronics.